

About Me
CTO/CO-FOUNDER
systems engineer

@brandonphilips
github.com/philips

Why build CoreOS?

run and isolate apps

containers

what is it exactly?

containers

libc
python
django
app.py

$ /usr/bin/python run app.py

libc
python
django
app.py

libc
python
django
app.py

example.com/myapp

$ container fetch example.com/myapp

$ container run example.com/myapp

pid ns
isolated pid 1

user ns
isolated uid 0

network ns
isolated netdev

mount ns
isolated /

cgroups
manage resources

cgroups
count resources

cgroups
limit resources

docker engine

google lmctfy
cloud foundry garden
mesos containers

lxc
systemd-nspawn

how are they created?

containers

super-powers

containers

App independence from the OS.

System to get container to the server.

Resource isolation between apps.

reduced API contracts

OS

kernel
systemd
etcd
ssh
docker

python
java
nginx
mysql
openssl

app

 d
is

tr
o

di
st

ro
 d

is
tr

o
di

st
ro

 d
is

tr
o

di
st

ro
 d

is
tr

o
di

st
ro

python
java
nginx
mysql
openssl

app

 d
is

tr
o

di
st

ro
 d

is
tr

o
di

st
ro

 d
is

tr
o

di
st

ro
 d

is
tr

o
di

st
ro

kernel
systemd
etcd
ssh
docker

python
openssl-A app1

 d
is

tr
o

di
st

ro
 d

is
tr

o
di

st
ro

 d
is

tr
o

di
st

ro
 d

is
tr

o
di

st
ro

java
openssl-B app2

java
openssl-B app3

kernel
systemd
etcd
ssh
docker

manual
updates

automatic
updates

automatic
updates

atomic with rollback

auto updates

super-powers

OS

Opportunity for automatic updates.

Consistent set of software across hosts.

Base OS independent from app.

design for host failure

clustering

etcd

/etc
distributed

open source software

sequentially consistent

exposed via HTTP

runtime reconfigurable

-X GET
Get Wait

-X PUT
Put Create CAS

-X DELETE
Delete CAD

Available

Available

Available

Unavailable

Available

Leader

Follower

Leader

Follower

Available

Leader

Follower

Temporarily Unavailable

Leader

Follower

Available

super-powers

etcd

Share configuration data across hosts.

Resilient to host failures.

Designed for consistency across hosts.

getting work to servers

scheduling

You

Scheduler API

Scheduler

Machine(s)

$ cat foo.service
[Service]
ExecStart=/usr/bin/sleep 500

$ fleetctl start foo.service
Job foo.service launched on
e1cd2bcd.../172.17.8.101

while true {
 todo = diff(desState, curState)
 schedule(todo)
}

while true {
 todo = diff(desState, curState)
 schedule(todo)
}

while true {
 todo = diff(desState, curState)
 schedule(todo)
}

while true {
 todo = diff(desState, curState)
 schedule(todo)
}

fleet
mesos

kubernetes
swarm

job scheduling

locksmith

coordination

super-powers

scheduling

Think about app capacity first.

Take advantage of compute resources.

Build for resilience to host failure.

skydns, discoverd, confd

service discovery

magic proxies

service discovery

OS

Containers

Cluster Configuration

Job Scheduling

Service Discovery

Wednesday 6:00pm AKL Continuous Delivery
Meetup.
CoreOS: An Introduction

Thursday 6:00 PM Go AKL Meetup
etcd (and maybe rocket)

Friday 10:40am LCA
CoreOS Tutorial

